HathiTrust Research Center
Architecture Overview

Robert H. McDonald | @mcdonald
Executive Committee-HathiTrust Research Center (HTRC)
Deputy Director-Data to Insight Center
Associate Dean-University Libraries
Indiana University
Follow Along

http://slidesha.re/U4z1gW
HTRC Architecture Group

Indiana University
- Beth Plale, Lead
- Yiming Sun
- Stacy Kowalczyk
- Aaron Todd
- Jiaan Zeng
- Guangchen Ruan
- Zong Peng
- Swati Nagde

University of Illinois
- J. Stephen Downie
- Loretta Auvil
- Boris Capitanu
- Kirk Hess
- Harriett Green
Presentation Overview

• Considerations for Current Architecture
• Architecture - Use Case Methodology
• Technical Overview
• UnCamp Sessions for Further Review
Main Case – Data Near Computation

- HT Volume Store (UM)
- HT Volume Store (IUPUI)
- FutureGrid Computation Cloud
- HTRC Volume Store and Index (IUB)
- XSEDE Compute Allocation
- UIUC Compute Allocation
Non-Consumptive Research Paradigm

• No action or set of actions on part of users, either acting alone or in cooperation with other users over duration of one or multiple sessions can result in sufficient information gathered from collection of copyrighted works to reassemble pages from collection.

• Definition disallows collusion between users, or accumulation of material over time. Differentiates human researcher from proxy which is not a user. Users are human beings.
Amicus Brief and NCR

- Jockers, Sag, Schultz –
- http://tinyurl.com/cy34hhr
Use Cases for Phase 1 Architecture

- Use Case #1 - Previously registered user submitted algorithm retrieved and run with results set
- Use Case #2 - HTRC applications/portal access (SEASR)
- Use Case #3 – Blacklight Lucene/Solr faceted access
- Use Case #4 - Direct programmatic access through Secure Data API (right now only for UnCamp and open content)
HTRC Current Infrastructure

• Servers
 – 14 production-level quad-core servers
 • 16 – 32GB of memory
 • 250 – 500GB of local disk each
 – 6-node Cassandra cluster for volume store
 – Ingest service and secure Data API access point

• Storage (IU University Infrastructure)
 – 13TB of 15,000 RPM SAS disk storage
 – Increase up to 17TB by end of 2012
 – 500TB available in late year 2-year 3
Key Components of Architecture

• Portal Access
• Blacklight Access
• Agent
• Registry
• Secured Data API Access
• Solr Proxy
HTRC Architecture

Portal Access
- Blacklight

Agent
- Job Submission
- Collection building

Security (OAuth2)

Registry (WSO2)
- Algorithms
- Meandre Workflows
- Result Sets
- Collections

Data API access interface

Audit
- Cassandra cluster
 - Volume store
- Solr index

Solr Proxy

Direct programmatic access (by programs running on HTRC machines)

Compute resources

Storage resources
HTRC Architecture

Portal Access
- Blacklight

Agent
- Job Submission
- Collection building

Security (OAuth2)

Audit
- Cassandra cluster
- Volume store
- Solr index

Algorithms

Result Sets

Meandre Workflows

Registry (WSO2)
- Algorithms
- Meandre Workflows
- Result Sets
- Collection

App SEAR

App Blacklight

Compute resources

HTRC Portal

Blacklight

Blacklight App

SEAR App

Solr Proxy

Portal Access

HTRC Portal
HTRC Architecture

Portal Access
- Blacklight

Agent
- Job Submission
- Collection building

Registry (WSO2)
- Algorithms
- Meandre Workflows
- Result Sets
- Collections

HTRC Agent

Job Submission
Collection building

Cassandra cluster
volume store

Solr index

Compute resources

Storage resources
HTRC Architecture

Portal Access
- Blacklight

Agent
- Job Submission
- Collection building

Security (OAuth2)

Registry (WSO2)
- Algorithms
- Meandre Workflows
- Result Sets
- Collections

Compute resources

Secure Data API

- RESTful Web Service
 - Language agnostic
 - Clients don’t have to deal with Cassandra
- Simple OAuth2 authentication
- HTTP over SSL
- Audits client access
- Protected behind firewall, accessible only to authorized IPs
HTRC Architecture

- Data API access interface
- Portal Access (Direct programmatic access (by programs running on HTRC machines))
- Security (OAuth2)
- Audit
- Cassandra cluster
- Volume store
- Solr index
- Algorithms
- Result Sets
- Meandre Workflows
- Registry (WSO2)

Compute resources
Storage resources

Solr Proxy

Solr proxy

Solr service

RFS distributed file system

Storage resources
NoSQL Methodology

• Currently HT content is stored in a pair-tree file system convention (CDL)
• Moving these files into a NoSQL store like Cassandra enabled HTRC to aggregate them into larger sets of files for use in retrieval
• Use of Cassandra enabled HTRC to share content over a commodity based Cassandra cluster of virtual machines
• Originally investigated use of MongoDB, CouchDB, Hbase and Cassandra
HTRC Solr Proxy + Solr Service

- Preserves all query syntax of original Solr
- Prevents user from modification
- Hides the host machine and port number HTRC Solr is actually running on
- Creates audit log of requests
- Provides filtered term vector for words starting with user-specified letter
- Filters out “dangerous” requests to Solr
- Adds additional features to Solr
 - E.g. Term Vectors
Data Capsules VM Cluster

Remote Desktop Or VNC

Provide secure VM

Scholars

Submit secure capsule map/reduce Data Capsule images to FutureGrid.
Receive and review results

FutureGrid Computation Cloud

HTRC Volume Store and Index

Non-Consumptive Research-Secure Data Capsule
Sessions for Further Review

• For more on Secure Data API – Tues Topic I/II (Yiming Sun)
• For more on Portal/SEASR – Tues Topic II (Loretta Auvil)
• For more on Portal/Blacklight – Tues Topic III (Stacy Kowalczyk)
Contact Information

• Robert H. McDonald
 – Email – robert@indiana.edu
 – Chat – rhmcdonald on googletalk | skype
 – Twitter - @mcdonald
 – Twitter Hashtag: #HTRC12